A linear actuator is a device that develops a force and a motion through a straight line. A stepper motor-based linear actuator uses a stepping motor as the source of rotary power. Inside the rotor, there’s a threaded precision nut instead of a shaft. The shaft is replaced by a lead-screw. As the rotor turns (as in a conventional stepper motor), linear motion is achieved directly through the nut and threaded screw. It makes sense to accomplish the rotary to linear conversion directly inside the motor, as this approach greatly simplifies the design of rotary to linear applications. This allows high resolution and accuracy ideal for use in applications where precision motion is required.
Stepper motors have been used in a wide array of applications for many years. With trends towards miniaturization, computer control and cost reduction, “hybrid” style stepper motor actuators are being used in an ever increasing range of applications. In particular the use of linear actuators has rapidly expanded in recent years. These precise, reliable motors can be found in many applications including blood analyzers and other medical instrumentation, automated stage lighting, imaging equipment, HVAC equipment, valve control, printing equipment, X-Y tables, integrated chip manufacturing, inspection and test equipment. This attractive technical solution eliminates the use of numerous components and the associated costs related to assembly, purchasing, inventory, etc. The applications for these motors are only limited by the designer’s imagination.
Video: Stepper Motor Linear Actuator Technology
Technical Document: Stepper Motor Theory